Aksenov V.S.

Aksenov Viktor S.

Associate Professor

Кафедра химической физики (4) / Institute of Physico-Technical Intelligent Systems
Works at MEPhI since 1983

Education

1975 — National Research Nuclear University MEPhI

Courses

1. Academic and Research Work
2. Academic (Research) Practice
3. Academic (Research) Practice:
4. Academic (Research) Practice: Chemical Physics
5. Experimental Methods of Chemical Physics
6. Industry Workshop (Scientific Research Work): Physics of Fast Processes
7. Materials Science. Technology of Constructional Materials
8. Physics of Condensed Systems Detonation and Combustion
9. Physics of Shock Waves in Real Mediums
10. Practical Training (Research Work)
11. Principles of Combustion Physics and Detonation of Condensed Systems
12. Research Term Project: Chemical Physics
13. Special Physical Experiment Technique
14. Workshop: Chemical Physics

Publication activity

4
h-index (Web of Science)
9
h-index (Scopus)
  1. Article
    Web of Science & Scopus
    Flow Structure in Rotating Detonation Engine with Separate Supply of Fuel and Oxidizer: Experiment and CFD // DETONATION CONTROL FOR PROPULSION: PULSE DETONATION AND ROTATING DETONATION ENGINES, 2018 pp. 39-59 doi
  2. Article
    Web of Science & Scopus
    Rocket Engine with Continuous Film Detonation of Liquid Fuel // Doklady Physical Chemistry, 2018 Vol. 481, Q4 pp. 105-109 doi
  3. Article
    Web of Science & Scopus
    Wind Tunnel Testing of a Detonation Ramjet Model at Approach Air Stream Mach Number 5.7 and a Stagnation Temperature of 1500 K // Doklady Physical Chemistry, 2018 Vol. 481, Q4 pp. 100-103 doi
  4. Article
    Web of Science & Scopus
    Continuous Detonation Combustion of Hydrogen: Results of Wind Tunnel Experiments // Combustion, Explosion and Shock Waves, 2018 Vol. 54, No. 3, Q2 pp. 357-363 doi
  5. Article
    Web of Science & Scopus
    Rocket Engine with Continuous Detonation Combustion of the Natural Gas–Oxygen Propellant System // Doklady Physical Chemistry, 2018 Vol. 478, No. 2, Q4 pp. 31-34 doi
  6. Article
    Web of Science & Scopus
    Hydrogen-fueled detonation ramjet model: Wind tunnel tests at approach air stream Mach number 5.7 and stagnation temperature 1500 K // International Journal of Hydrogen Energy, 2018 Vol. 43, No. 15, Q1 pp. 7515-7524 doi
  7. Article
    Web of Science & Scopus
    Deflagration-to-detonation transition in the gas–liquid-fuel film system // Doklady Physical Chemistry, 2017 Vol. 474, No. 2, Q4 pp. 93-98 doi
  8. Article
    Web of Science & Scopus
    Calculation of shock wave propagation in water containing reactive gas bubbles // Russian Journal of Physical Chemistry B, 2017 Vol. 11, No. 2, Q4 pp. 261-271 doi
  9. Article
    Web of Science & Scopus
    Tests of the hydrogen-fueled detonation ramjet model in a wind tunnel with thrust measurements // AIP Conference Proceedings, 2017 Vol. 1893 doi
  10. Article
    Web of Science & Scopus
    Deflagration-to-detonation transition in crossed-flow fast jets of propellant components // Doklady Physical Chemistry, 2017 Vol. 476, No. 1, Q4 pp. 153-156 doi
  11. Article
    Web of Science & Scopus
    Hydrojet Engine with Pulse Detonation Combustion of Liquid-Fuel // DOKLADY PHYSICAL CHEMISTRY, 2017 Vol. 475, Q4 pp. 129-133 doi
  12. Article
    Web of Science & Scopus
    Continuous detonation combustion of ternary hydrogen-liquid propane-air mixture in annular combustor // International Journal of Hydrogen Energy, 2017 Vol. 42, No. 26, Q1 pp. 16808-16820 doi
  13. Article
    Web of Science & Scopus
    Demonstrator of continuous-detonation air-breathing ramjet: Wind tunnel data // Doklady Physical Chemistry, 2017 Vol. 474, No. 1, Q4 pp. 75-79 doi
  14. Article
    Web of Science & Scopus
    Experimental and computational studies of shock wave-to-bubbly water momentum transfer // International Journal of Multiphase Flow, 2017 Vol. 92, Q1 pp. 20-38 doi
  15. Article
    Web of Science & Scopus
    Wind tunnel tests of a hydrogen-fueled detonation ramjet model at approach air stream Mach numbers from 4 to 8 // International Journal of Hydrogen Energy, 2017 Vol. 42, No. 40, Q1 pp. 25401-25413 doi
  16. Article
    Web of Science & Scopus
    Thrust characteristics of a pulse detonation engine operating on a liquid hydrocarbon fuel // Russian Journal of Physical Chemistry B, 2016 Vol. 10, No. 2, Q4 pp. 291-297 doi
  17. Article
    Web of Science & Scopus
    Magnetohydrodynamic effects of heterogeneous spray detonation // Russian Journal of Physical Chemistry B, 2015 Vol. 9, No. 4, Q4 pp. 637-643 doi
  18. Article
    Web of Science & Scopus
    Chemiionization and acoustic diagnostics of the process in continuous- and pulse-detonation combustors // DOKLADY PHYSICAL CHEMISTRY, 2015 Vol. 465, Q3 pp. 273-278 doi
  19. Article
    Web of Science & Scopus
    Momentum transfer from a shock wave to a bubbly liquid // Russian Journal of Physical Chemistry B, 2015 Vol. 9, No. 6, Q4 pp. 895-900 doi
  20. Article
    Web of Science & Scopus
    Experimental proof of Zel'dovich cycle efficiency gain over cycle with constant pressure combustion for hydrogen-oxygen fuel mixture // International Journal of Hydrogen Energy, 2015 Q1 doi
  21. Article
    Web of Science & Scopus
    Numerical Simulation of Momentum Transfer from a Shock Wave to a Bubbly Medium // RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2015 Vol. 9, No. 3, Q4 pp. 363-374 doi
  22. Article
    Web of Science & Scopus
    Energy efficiency of a continuous-detonation combustion chamber // Combustion, Explosion and Shock Waves, 2015 Vol. 51, No. 2, Q3 pp. 232-245 doi
  23. Article
    Web of Science & Scopus
    Large-scale hydrogen-air continuous detonation combustor // International Journal of Hydrogen Energy, 2015 Vol. 40, No. 3, Q1 pp. 1616-1623 doi
  24. Article
    Web of Science & Scopus
    Experimental proof of the energy efficiency of the Zel'dovich thermodynamic cycle // DOKLADY PHYSICAL CHEMISTRY, 2014 Vol. 459, Q3 pp. 207-211 doi